Source code for unravel.region_stats.rstats_mean_IF

#!/usr/bin/env python3

"""
Use ``rstats_mean_IF`` (``rmi``) from UNRAVEL to measure mean intensity of immunofluorescence staining in brain regions in atlas space.

Inputs:
    - `*`.nii.gz
    - path/atlas.nii.gz (e.g., atlas_CCFv3_2020_30um.nii.gz)

Outputs: 
    - ./rstats_mean_IF/image_name.csv with regional mean intensity values for each image

Next: 
    - cd rstats_mean_IF
    - ``rstats_mean_IF_summary``

Usage:
------
    rstats_mean_IF -i '<asterisk>.nii.gz' -a path/atlas [--regions 1 2 3] [--masks path/mask1.nii.gz path/mask2.nii.gz] [-v]
"""

import csv
import nibabel as nib
import numpy as np
from pathlib import Path 
import pandas as pd
from rich.traceback import install

from unravel.core.config import Configuration
from unravel.core.help_formatter import RichArgumentParser, SuppressMetavar, SM
from unravel.core.img_io import load_3D_img
from unravel.core.img_tools import label_IDs
from unravel.core.utils import log_command, verbose_start_msg, verbose_end_msg
from unravel.voxel_stats.apply_mask import load_mask


[docs] def parse_args(): parser = RichArgumentParser(formatter_class=SuppressMetavar, add_help=False, docstring=__doc__) reqs = parser.add_argument_group('Required arguments') reqs.add_argument('-i', '--input', help="Pattern for NIfTI images to process (e.g., '*.nii.gz')", required=True, action=SM) reqs.add_argument('-a', '--atlas', help='Path/atlas.nii.gz (e.g., atlas_CCFv3_2020_30um.nii.gz or atlas_CCFv3_2020_30um_split.nii.gz)', required=True, action=SM) opts = parser.add_argument_group('Optional arguments') opts.add_argument('-r', '--regions', help='Space-separated list of region intensities to process. Default: process all IDs', nargs='*', type=int, action=SM) opts.add_argument('-mas', '--masks', help='Paths to mask .nii.gz files to restrict analysis. Default: None', nargs='*', default=None, action=SM) general = parser.add_argument_group('General arguments') general.add_argument('-v', '--verbose', help='Increase verbosity. Default: False', action='store_true', default=False) return parser.parse_args()
[docs] def calculate_mean_intensity(atlas, image, regions=None, verbose=False): """Calculates mean intensity for each region in the atlas.""" if verbose: print("\n Calculating mean immunofluorescence intensity for each region in the atlas...\n") # Filter out background valid_mask = atlas > 0 valid_atlas = atlas[valid_mask].astype(int) # Convert to int for bincount valid_image = image[valid_mask] # Use bincount to sum intensities for each cluster and count voxels sums = np.bincount(valid_atlas, weights=valid_image) counts = np.bincount(valid_atlas) # Suppress the runtime warning and handle potential division by zero with np.errstate(divide='ignore', invalid='ignore'): mean_intensities = sums / counts mean_intensities = np.nan_to_num(mean_intensities) # Convert to dictionary (ignore background) mean_intensities_dict = {i: mean_intensities[i] for i in range(1, len(mean_intensities))} # Filter the dictionary if `regions` is provided and not empty if regions is not None: # Ensure `regions` is a list or set to prevent ambiguity regions_set = set(regions) if not isinstance(regions, set) else regions mean_intensities_dict = {region: mean_intensities_dict.get(region, 0) for region in regions_set} mean_intensities_dict.pop(0, None) # Drop the background # mean_intensities_dict = {region: mean_intensities_dict[region] for region in regions if region in mean_intensities_dict} # Original line # Print the results if verbose: region_mean_df = pd.DataFrame(mean_intensities_dict.items(), columns=['Region', 'Mean_intensity']) print(f'\n{region_mean_df}\n') return mean_intensities_dict
[docs] def write_to_csv(data, output_file): """Writes the data to a CSV file.""" with open(output_file, 'w', newline='') as csvfile: writer = csv.writer(csvfile) writer.writerow(["Region_Intensity", "Mean_IF_Intensity"]) for key, value in data.items(): writer.writerow([key, value])
[docs] @log_command def main(): install() args = parse_args() Configuration.verbose = args.verbose verbose_start_msg() # Either use the provided list of region IDs or create it using unique intensities if args.regions: region_intensities = args.regions else: print(f'\nProcessing these region IDs from {args.atlas}') atlas_img = load_3D_img(args.atlas, verbose=args.verbose) region_intensities = label_IDs(atlas_img, min_voxel_count=1, print_IDs=True, print_sizes=False) print() atlas_nii = nib.load(args.atlas) atlas_img = atlas_nii.get_fdata(dtype=np.float32) # Apply mask(s) if provided if args.masks is not None: mask_imgs = [load_mask(path) for path in args.masks] if args.masks else [] mask_img = np.ones(atlas_img.shape, dtype=bool) if not mask_imgs else np.logical_and.reduce(mask_imgs) atlas_img = np.where(mask_img, atlas_img, 0) output_folder = Path('rstats_mean_IF') output_folder.mkdir(parents=True, exist_ok=True) files = Path().cwd().glob(args.input) for file in files: if str(file).endswith('.nii.gz'): nii = nib.load(file) img = nii.get_fdata(dtype=np.float32) # Calculate mean intensity mean_intensities = calculate_mean_intensity(atlas_img, img, region_intensities, args.verbose) output_filename = str(file.name).replace('.nii.gz', '.csv') output = output_folder / output_filename write_to_csv(mean_intensities, output) print('CSVs with regional mean IF intensities output to ./rstats_mean_IF/') verbose_end_msg()
if __name__ == '__main__': main()