unravel.allen_institute.genetic_tools_atlas.org_samples module#

Use gta_org_samples (gta_os) from UNRAVEL to organize GTA data across samples for batch processing.

Prereqs:
  • gta_download (gta_dl) must be run first to download .zarr data at a set resolution.

  • io_convert_img (conv) must be run to convert the .zarr data to TIFF series.

Inputs:
  • *.zarr files from gta_download (gta_dl) at a set resolution (e.g., level 3).

Outputs:
  • Root dir: TIFFs/

  • Directories created based on the fluorescent channel (e.g., red, green, dual).

  • Relevant sample directories created in each channel directory (e.g., ID_<Image Series ID>).

  • Sample directories contain ‘green’ and ‘red’ directories with TIFF files for each channel.

Note

  • Key SpecimenMetadata.csv columns: ‘Image Series ID’ ‘Donor Genotype’ ‘Cargo’

  • Run from GTA_level_3 directory

Next steps:

Usage:#

gta_os [-d red green] [-i “path/to/SpecimenMetadata.csv”] [-col col1 col2 …] [-o output_dir] [-p sample_prefix] [-v]

unravel.allen_institute.genetic_tools_atlas.org_samples.parse_args()[source]#
unravel.allen_institute.genetic_tools_atlas.org_samples.org_samples(df, target_dir, prefix, tif_dirs)[source]#

Organize samples into directories based on the SpecimenMetadata DataFrame.

Parameters:#

dfpd.DataFrame

DataFrame containing ‘Image Series ID’ with the sample IDs to organize.

target_dirPath

Directory where the sample directories will be created.

prefixstr

Prefix for sample directories.

tif_dirslist of str

List of TIFF directory names to organize (e.g., [‘red’, ‘green’]).

unravel.allen_institute.genetic_tools_atlas.org_samples.main()[source]#